PREPARATION AND CHARACTERIZATION OF MICROCRYSTALLINE CELLULOSE FROM OIL PALM FROND BY CHEMICAL AND MECHANICAL TREATMENT
DOI:
https://doi.org/10.21776/MECHTA.2025.006.01.8Keywords:
Oil Palm Frond Fibers, Microcrystalline Cellulose, Chemical Treatment, Mechanical Treatment, Ball mill, CharacterizationAbstract
Oil palm fronds are currently an underutilised by product of plantations. The micro and nano cellulose can be utilised to create new goods, such as being used as a filler in environmentally friendly degradable composites. This study examined the process of extracting oil palm frond fiber (OPFF) by using a series of chemical and mechanical treatments to get pure microcrystalline cellulose (MCC). The MCC obtained by OPFF was subsequently analysed in further detail. The identification of morphological analysis, presence of functional groups, and crystallinity index were conducted using Scanning Electron Microscopy (SEM), Fourier Transform InfraRed (FTIR) and X-Ray Difraction (XRD) techniques. The findings revealed the presence of microcrystalline structures in OPF fibers, having a mean measurement of width 3.2 ± 0.42 ?m. The application of FTIR verified that the elimination of noncellulosic constituents from the treated OPF fibers had achieved its utmost level. Simultaneously, X-ray diffraction research revealed that the utilization of chemical procedures resulted the formation of a characteristic cellulose crystal structure and an augmentation in the crystallinity index. However, the mechanical treatment resulted in a minor drop in the crystalline index. This can be ascribed to the disturbance of cellulose chains and the crystal structure within the cellulose fibers. The cellulose obtained from raw fibers and subsequent processing exists in a very pure form, specifically in the cellulose I? structure. This enables its utilization as reinforcement in eco-friendly MCC-based green composites, offering numerous benefits.
References
C. Petrenko, J. Paltseva, and S. Searle, “Ecological impacts of palm oil expansion in Indonesia | International Council on Clean Transportation,” Washingt. Int. Counc. Clean Transp., no. July, pp. 1–21, 2016.
R. Moreno-Peñaranda, A. Gasparatos, P. Stromberg, A. Suwa, A. H. Pandyaswargo, and J. A. P. de Oliveira, “Sustainable production and consumption of palm oil in Indonesia: What can stakeholder perceptions offer to the debate?,” Sustain. Prod. Consum., vol. 4, pp. 16–35, 2015.
F. N. N. M. Hussin, N. Attan, and R. A. Wahab, “Extraction and Characterization of Nanocellulose from Raw Oil Palm Leaves (Elaeis guineensis),” Arab. J. Sci. Eng., vol. 45, no. 1, pp. 175–186, 2020, doi: 10.1007/s13369-019-04131-y.
E. Saputra, H. Sugesti, B. A. Prawiranegara, Y. Aziz, A. Fadli, and O. Muraza, “Waste materials from palm oil plant as exploratory catalysts for FAME biodiesel production,” Appl. Nanosci., vol. 12, no. 12, pp. 3703–3719, 2022, doi: 10.1007/s13204-021-02185-9.
C. B. S. Teh, “Availability, use, and removal of oil palm biomass in Indonesia,” Rep. Prep. Int. Counc. Clean Transp., pp. 1–39, 2016.
O. Folahan, A.-W. Taiwo, A. Ghazali, A. Khalil, and A. Hassan, “Isolation and Characterization of Microcrystalline Cellulose from Oil Palm Fronds using Chemomechanical Process Development of lemuni and kerabu rice View project Natural Fiber Reinforced Composites View project,” Wood Fiber Sci., vol. 48, no. 4, pp. 1–11, 2016, [Online]. Available: ttps://www.researchgate.net/publication/308522415.
M. H. Hussin et al., “Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents,” Int. J. Biol. Macromol., vol. 92, pp. 11–19, 2016, doi: 10.1016/j.ijbiomac.2016.06.094.
C. H. Chuin Tan, S. Sabar, M. K. M. Haafiz, Z. N. Garba, and M. H. Hussin, “The improved adsorbent properties of microcrystalline cellulose from oil palm fronds through immobilization technique,” Surfaces and Interfaces, vol. 20, no. April, 2020, doi: 10.1016/j.surfin.2020.100614.
M. Hazwan Hussin, I. Bello, T. S. Hamidon, M. A. Bakar, A. A. Mohamad, and M. K. Mohamad Haafiz, “Physico-chemical and conductivity studies of microcrystalline cellulose (mcc) extracted from oil palm fronds as a susceptible filler in pla-litfsi polymer electrolyte,” J. Oil Palm Res., vol. 32, no. 2, pp. 271–285, 2020, doi: 10.21894/jopr.2020.0023.
M. H. Hussin, N. A. Husin, I. Bello, N. Othman, M. A. Bakar, and M. K. Mohamad Haafiz, “Isolation of microcrystalline cellulose (MCC) from oil palm frond as potential natural filler for PVA-LiClO4 polymer electrolyte,” Int. J. Electrochem. Sci., vol. 13, no. 4, pp. 3356–3371, 2018, doi: 10.20964/2018.04.06.
A. F. Tarchoun, D. Trache, A. Abdelaziz, S. Bekhouche, and H. Boukeciat, “Exploration of palm fronds as a prominent alternative resource for the production of energetic cellulose-rich biopolymers,” Mater. Today Proc., vol. 53, pp. 31–35, 2022, doi: 10.1016/j.matpr.2021.12.218.
A. Merci, A. Urbano, M. V. E. Grossmann, C. A. Tischer, and S. Mali, “Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion,” Food Res. Int., vol. 73, pp. 38–43, 2015, doi: 10.1016/j.foodres.2015.03.020.
S. M. A. S. Keshk and M. A. Haija, “A new method for producing microcrystalline cellulose from Gluconacetobacter xylinus and kenaf,” Carbohydr. Polym., vol. 84, no. 4, pp. 1301–1305, 2011, doi: 10.1016/j.carbpol.2011.01.024.
R. Ramli, N. Junadi, M. D. H. Beg, and R. M. Yunus, “Microcrystalline Cellulose ( MCC ) From Oil Palm Empty Fruit Bunch ( EFB ) Fiber via Simultaneous Ultrasonic and Alkali Treatment,” vol. 9, no. 1, pp. 8–11, 2015.
R. Katakojwala and S. V. Mohan, “Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment,” J. Clean. Prod., vol. 249, p. 119342, 2020, doi: 10.1016/j.jclepro.2019.119342.
S. R. A. M. Rasli, I. Ahmad, A. M. Lazim, and A. Hamzah, “Extraction and characterization of cellulose from agricultural residue - oil palm fronds,” Malaysian J. Anal. Sci., vol. 21, no. 5, pp. 1065–1073, 2017, doi: 10.17576/mjas-2017-2105-08.
A. F. Owolabi, M. K. M. Haafiz, M. S. Hossain, M. H. Hussin, and M. R. N. Fazita, “Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds,” Int. J. Biol. Macromol., vol. 95, pp. 1228–1234, 2017, doi: 10.1016/j.ijbiomac.2016.11.016.
M. S. Mat Rasat, R. Wahab, Z. Abdul Kari, A. A. Mohd Yunus, J. Moktar, and S. F. Mhd. Ramle, “Strength Properties of Bio-composite Lumbers from Lignocelluloses of Oil Palm Fronds Agricultural Residues,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 3, no. 3, p. 199, 2013, doi: 10.18517/ijaseit.3.3.320.
M. Rasat., R. Wahab, O. Sulaiman, A. Moktar, Janshah. Mohamed, and I. Tabet, A. T. Khalid, “Properties of Composite Boards From Oil Palm,” BioResources, vol. 6, no. 4, pp. 4389–4403, 2011.
G. Zope, A. Goswami, and S. Kulkarni, “Isolation and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Banana Pseudostem,” Bionanoscience, vol. 12, no. 2, pp. 463–471, 2022, doi: 10.1007/s12668-022-00960-8.
A. Andoko, F. Gapsari, K. Diharjo, S. M R, and S. Siengchin, “Isolation of microcellulose from timoho fiber using the process of delinigfication and maceration: Evaluation of physical, chemical, structural, and thermal properties,” Int. J. Biol. Macromol., vol. 224, no. October 2022, pp. 48–54, 2022, doi: 10.1016/j.ijbiomac.2022.10.225.
X. Rao, S. Kuga, M. Wu, and Y. Huang, “Influence of solvent polarity on surface- fluorination of cellulose nanofiber by ball milling,” Cellulose, vol. 22, no. 4, pp. 2341–2348, 2015, doi: 10.1007/s10570-015-0659-2.
Rantheesh J, Indran S, Raja S, and S. Siengchin, “Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro-industrial residual waste oil cake for futuristic applications,” Biomass Convers. Biorefinery, vol. 13, no. 5, pp. 4393–4411, 2023, doi: 10.1007/s13399-022-03467-0.
D. Divakaran, M. Sriariyanun, R. Jagadeesan, I. Suyambulingam, M. R. Sanjay, and S. Siengchin, “Isolation and characterization of an agro-industrial waste-based novel cellulosic micro fillers from mustard (Brassica juncea) seed oil cake: A waste to wealth approach,” Biomass Convers. Biorefinery, no. 0123456789, 2023, doi: 10.1007/s13399-023-04346-y.
L. Segal, J. J. Creely, A. E. Martin Jr, and C. M. Conrad, “An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer,” Text. Res. J., vol. 29, no. 10, pp. 786–794, 1959.
A. Hachaichi, B. Kouini, L. K. Kian, M. Asim, and M. Jawaid, “Extraction and Characterization of Microcrystalline Cellulose from Date Palm Fibers using Successive Chemical Treatments,” J. Polym. Environ., vol. 29, no. 6, pp. 1990–1999, 2021, doi: 10.1007/s10924-020-02012-2.
A. Tseng et al., “Extraction and Characterization of Microcrystalline Cellulose from Lagenaria siceraria Fruit Pedicles,” Polym. , vol. 14, no. 1867, pp. 1–11, 2022, [Online]. Available: https://doi.org/10.3390/polym14091867
J. Baruah, R. C. Deka, and E. Kalita, “Greener production of microcrystalline cellulose (MCC) from Saccharum spontaneum (Kans grass): Statistical optimization,” Int. J. Biol. Macromol., vol. 154, pp. 672–682, 2020, doi: 10.1016/j.ijbiomac.2020.03.158.
Y. Zheng, Z. Fu, D. Li, and M. Wu, “Effects of ball milling processes on the microstructure and rheological properties of microcrystalline cellulose as a sustainable polymer additive,” Materials (Basel)., vol. 11, no. 7, pp. 1–13, 2018, doi: 10.3390/ma11071057.
M. Nuruddin, M. Hosur, M. J. Uddin, D. Baah, and S. Jeelani, “A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment,” J. Appl. Polym. Sci., vol. 133, no. 9, pp. 1–10, 2016, doi: 10.1002/app.42990.
K. J. Nagarajan, A. N. Balaji, and N. R. Ramanujam, “Extraction of cellulose nanofibers from cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment,” Carbohydr. Polym., vol. 212, no. November 2018, pp. 312–322, 2019, doi: 10.1016/j.carbpol.2019.02.063.
S. Gnanasekaran, N. I. A. Ahamad Nordin, S. S. Jamari, and J. H. Shariffuddin, “Isolation and characterisation of nanofibrillated cellulose from N36 Ananas comosus leaves via ball milling with green solvent,” Ind. Crops Prod., vol. 178, no. February,
p. 114660, 2022, doi: 10.1016/j.indcrop.2022.114660.
K. Song, Y. Ji, L. Wang, Y. Wei, and Z. Yu, “A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis,” J. Clean. Prod., vol. 196, pp. 1169–1175, 2018, doi: 10.1016/j.jclepro.2018.06.128.
L. Ravindran, M. S. Sreekala, and S. Thomas, “Novel processing parameters for the extraction of cellulose nanofibers (CNF) from environmentally benign pineapple leaf fibers (PALF): Structure-property relationships,” Int. J. Biol. Macromol., vol. 131, pp. 858–870, 2019, doi: 10.1016/j.ijbiomac.2019.03.134.
M. F. Yazdanbakhsh and A. Rashidi, “The effect of ultrasonic waves on alpha- cellulose extraction from wheat bran to prepare alpha-cellulose nanofibers,” J. Text. Inst., vol. 111, no. 10, pp. 1518–1529, 2020, doi: 10.1080/00405000.2019.1709261.
O. Romruen, T. Karbowiak, W. Tongdeesoontorn, K. A. Shiekh, and S. Rawdkuen, “Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand,” Polymers (Basel)., vol. 14, no. 9, pp. 1–13, 2022, doi: 10.3390/polym14091830.
Y. Yang et al., “Isolation and characterization of cellulosic fibers from bamboo shoot shell,” Polym. Bull., vol. 80, no. 2, pp. 1817–1829, 2023, doi: 10.1007/s00289-022- 04158-6.
R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh, “Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius),” Carbohydr. Polym., vol. 88, no. 2, pp. 772–779, 2012, doi: 10.1016/j.carbpol.2012.01.062.
H. Ren et al., “Preparation of microcrystalline cellulose from agricultural residues and their application as polylactic acid/microcrystalline cellulose composite films for the preservation of Lanzhou lily,” Int. J. Biol. Macromol., vol. 227, no. December 2022, pp. 827–838, 2023, doi: 10.1016/j.ijbiomac.2022.12.198.
R. Dungani et al., “Preparation and Fundamental Characterization of Cellulose Nanocrystal from Oil Palm Fronds Biomass,” J. Polym. Environ., vol. 25, no. 3, pp. 692–700, 2017, doi: 10.1007/s10924-016-0854-8.
T. Šoštari? et al., “Structural changes of waste biomass induced by alkaline treatment: the effect on crystallinity and thermal properties,” Biomass Convers. Biorefinery, vol. 12, no. 7, pp. 2377–2387, 2022, doi: 10.1007/s13399-020-00766-2.
D. Lin et al., “Properties of polyvinyl alcohol films reinforced by citric acid modified cellulose nanocrystals and silica aerogels,” Carbohydr. Polym., vol. 298, no. May, p. 120116, 2022, doi: 10.1016/j.carbpol.2022.120116.
Z. Ling et al., “Effects of ball milling on the structure of cotton cellulose,” Cellulose, vol. 26, no. 1, pp. 305–328, 2019, doi: 10.1007/s10570-018-02230-x.
F. T. Seta et al., “Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis,” Carbohydr. Polym., vol. 234, no. February, p. 115942, 2020, doi: 10.1016/j.carbpol.2020.115942.
E. Syafri, Jamaluddin, N. H. Sari, M. Mahardika, P. Amanda, and R. A. Ilyas, “Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment,” Int. J. Biol. Macromol., vol. 200, no. November 2021, pp. 25–33, 2022, doi: 10.1016/j.ijbiomac.2021.12.111.
N. Amiralian, P. K. Annamalai, P. Memmott, and D. J. Martin, “Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods,” Cellulose, 2015, doi: 10.1007/s10570-015-0688-x.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Randis, Djarot B. Darmadi , Femiana Gapsari , Achmad As’Ad Sonief , Tatag Yufitra Rus

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).