THE PREDICTION OF HYDROGEN EVOLUTION REACTION FROM DYNAMIC MAGNETIC FIELD ASSISTED WATER ELECTROLYSIS ARTIFICIAL NEURAL NETWORK

Authors

  • Willy Satrio Nugroho Brawijaya University
  • Purnami Brawijaya University
  • Ajani Aiman Schulze Taylors University
  • Angga Anggara T-REX CO. LTD
  • Klauss Schulze SR Technics Switzerland Ltd.

DOI:

https://doi.org/10.21776/MECHTA.2025.006.01.1

Keywords:

Artificial Neural Network, Hydrogen Evolution Reaction, Water Electrolysis, Dynamic Magnetic Field, Prediction

Abstract

This study explores the prediction of Hydrogen Evolution Reaction (HER) performance in Dynamic Magnetic Field (DMF) assisted water electrolysis using Artificial Neural Networks (ANN). The integration of ANN models with experimental data from DMF-assisted electrolysis provides valuable insights into the complex interplay between magnetic fields and electrochemical processes. The results show significant enhancements in HER rates compared to conventional electrolysis, with static magnetic fields also contributing to performance improvements. The ANN models developed exhibit high accuracy in predicting HER performance under varying DMF rotational speeds, as evidenced by low Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and high R-squared values, demonstrating their strong predictive power and reliability. However, caution is advised regarding overfitting, and future research should focus on incorporating techniques like regularization and cross-validation to enhance model generalization. This study lays the foundation for further optimization of efficient hydrogen production technologies in the context of sustainable energy solutions.

Author Biography

Willy Satrio Nugroho, Brawijaya University

 

 

References

T. A. Nakabi and P. Toivanen, “Deep reinforcement learning for energy management in a microgrid with flexible demand,” Sustain. Energy, Grids Networks, vol. 25, 2021, doi: 10.1016/j.segan.2020.100413.

M. Riemer, S. Duval-Dachary, and T. M. Bachmann, “Environmental implications of reducing the platinum group metal loading in fuel cells and electrolysers: Anion exchange membrane versus proton exchange membrane cells,” Sustain. Energy Technol. Assessments, vol. 56, 2023, doi: 10.1016/j.seta.2023.103086.

M. Azimzadeh Sani et al., “Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular-Level Insights into the Electrical Double Layer,” Angew. Chemie - Int. Ed., vol. 61, no. 5, 2022, doi: 10.1002/anie.202112679.

D. J. Griffiths and C. Inglefield, “ Introduction to Electrodynamics ,” Am. J. Phys., vol. 73, no. 6, pp. 574–574, 2005, doi: 10.1119/1.4766311.

N. Bidin et al., “The effect of magnetic and optic field in water electrolysis,” Int. J. Hydrogen Energy, vol. 42, no. 26, pp. 16325–16332, 2017, doi: 10.1016/j.ijhydene.2017.05.169.

R. Kanzaki, T. Hidaka, H. Kodamatani, and T. Tomiyasu, “Determination of autoprotolysis (autoionization) constant according to gran’s procedure on potentiometric titrations,” J. Mol. Liq., vol. 384, 2023, doi: 10.1016/j.molliq.2023.122180.

N. Bidin et al., “The effect of sunlight in hydrogen production from water electrolysis,” Int. J. Hydrogen Energy, vol. 42, no. 1, pp. 133–142, 2017, doi: 10.1016/j.ijhydene.2016.11.203.

M. Y. Lin and L. W. Hourng, “Effects of magnetic field and pulse potential on hydrogen production via water electrolysis,” Int. J. Energy Res., vol. 38, no. 1, pp. 106–116, 2014, doi: 10.1002/er.3112.

A. Godula-Jopek, Hydrogen Production: By Electrolysis. 2015.

Y. H. Li and Y. J. Chen, “The effect of magnetic field on the dynamics of gas bubbles in water electrolysis,” Sci. Rep., vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-87947-9.

S. Davoodi, H. Vo Thanh, D. A. Wood, M. Mehrad, M. Al-Shargabi, and V. S. Rukavishnikov, “Machine-learning models to predict hydrogen uptake of porous carbon materials from influential variables,” Sep. Purif. Technol., vol. 316, 2023, doi: 10.1016/j.seppur.2023.123807.

P. Purnami, W. Satrio Nugroho, N. Hamidi, W. W, A. A. Schulze, and I. N. G. Wardana, “Double deep Q network intelligent adaptive control for highly efficient dynamic magnetic field assisted water electrolysis,” Int. J. Hydrogen Energy, vol. 59, pp. 457–464, 2024, doi: 10.1016/j.ijhydene.2024.01.321.

P. Purnami et al., “Enhancement of hydrogen production using dynamic magnetic field through water electrolysis,” Int. J. Energy Res., Jan. 2022, doi: 10.1002/er.7638.

M. A. Abdelkareem et al., “Progress of artificial neural networks applications in hydrogen production,” Chem. Eng. Res. Des., vol. 182, pp. 66–86, 2022, doi: 10.1016/j.cherd.2022.03.030.

J. F. Gaviria, G. Narváez, C. Guillen, L. F. Giraldo, and M. Bressan, “Machine learning in photovoltaic systems: A review,” Renewable Energy, vol. 196. pp. 298–318, 2022, doi: 10.1016/j.renene.2022.06.105.

S. M. Malakouti, “Use machine learning algorithms to predict turbine power generation to replace renewable energy with fossil fuels,” Energy Explor. Exploit., vol. 41, no. 2, pp. 836–857, 2023, doi: 10.1177/01445987221138135.

A. I. Osman et al., “Optimizing biomass pathways to bioenergy and biochar application in electricity generation, biodiesel production, and biohydrogen production,” Environmental Chemistry Letters, vol. 21, no. 5. pp. 2639–2705, 2023, doi: 10.1007/s10311-023-01613-2.

W. W. Sleator, “The Faraday Laws of Electrolysis,” Am. J. Phys., vol. 9, no. 3, pp. 166–168, 1941, doi: 10.1119/1.1991660.

A. Y. Faid, L. Xie, A. O. Barnett, F. Seland, D. Kirk, and S. Sunde, “Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 53, pp. 28272–28284, 2020, doi: 10.1016/j.ijhydene.2020.07.202.

K. L. Du, C. S. Leung, W. H. Mow, and M. N. S. Swamy, “Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era,” Mathematics, vol. 10, no. 24. 2022, doi: 10.3390/math10244730.

C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A Study on Overfitting in Deep Reinforcement Learning,” Apr. 2018.

S. Nithya and S. Umarani, “MOOC Dropout Prediction using FIAR-ANN Model based on Learner Behavioral Features,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 9, pp. 607–617, 2022, doi: 10.14569/IJACSA.2022.0130972.

M. Vega García and J. L. Aznarte, “Shapley additive explanations for NO2 forecasting,” Ecol. Inform., vol. 56, 2020, doi: 10.1016/j.ecoinf.2019.101039.

Downloads

Published

2025-01-13

Issue

Section

Articles