STRESS DISTRIBUTION ANALYSIS ON LIGAMENT AUGMENTATION AND RECONSTRUCTION SYSTEM (LARS) USING FINITE ELEMENT METHOD (FEM)

Authors

  • Fauzan Aulia Brawijaya University
  • Achmad As’ad Sonief Brawijaya University
  • Nafisah Arina Hidayati Brawijaya University

DOI:

https://doi.org/10.21776/MECHTA.2023.004.01.7

Keywords:

LARS, Stress, Femur, Shin

Abstract

The Ligament Augmentation and Reconstruction System (LARS) is a prosthetic device used to support knee ligaments severed due to injury. The role of LARS in supporting the knee ligaments is to take over the position of the natural ligaments that have been severed, binding the thigh bone and shin bone. LARS is made from polyethylene terephthalate (PET) material, commonly used in industry. LARS is a prosthetic product widely used to heal ligament injuries. However, despite its everyday use, no one has confirmed whether LARS can support a severed ligament. There has never been a study analyzing this tool, even from the company that makes LARS. They only state that LARS is safe and suitable for healing ligament injuries. Therefore, a LARS analysis is needed to convince the public that the tool is safe. This study analyzed the stress distribution in LARS during the standing-to-squatting condition. The results show an uneven stress distribution between the LARS inside the femur and other parts of the LARS. However, the stress distribution is still in a safe condition that does not directly reduce the strength of the LARS.

References

FRANK, C. B. 2004. Ligament Structure, Physiology, and Function. J Musculoskelet Neuronal Interact 2004 Jun;4(2):199-201. https://pubmed.ncbi.nlm.nih.gov/15615126/

MatWeb. 2022. Overview of Materials for Polyethylene Terephthalate (PET), Glass Fiber Filled, Flame Retardant. Overview of materials for Polyethylene Terephthalate (PET), Glass Fiber Filled, Flame Retardant (matweb.com).

ILIADIS, DIMITRIOS PH., DIMITRIOS, BOURLOS N., DIMITRIOS S. MASTROKALOS, EFSTATHIOS CHRONOPOULOS, GEORGE, BABIS S. 2016. LARS Artificial Ligament Versus ABC Purely Polyester Ligament for Anterior Cruciate Ligament Reconstruction. Athena: University of Athens. https://doi.org/10.1177/2325967116653359

RODRÍGUEZ-MERCHÁN, EMERITO CARLOS. 2021. Anterior Cruciate Ligament Reconstruction: Is Biological Augmentation Beneficial? Madrid: La Paz University Hospital. Int. J. Mol. Sci. 2021, 22(22), 12566. https://doi.org/10.3390/ijms222212566

NEWMAN, SIMON D. S., HENRY D. E. ATKINSON, CHARLES A WILLIS-OWEN,. 2012. Anterior Cruciate Ligament with the Ligament Augmentation and Reconstruction System: A Systematic Review. London: Imperial College London. Int Orthop. 2013 Feb;37(2):321-6. https://doi.org/10.1007/s00264-012-1654-y

BENOS, LEFTERIS. STANEV, DIMITAR, LEONIDAS SPYROU, KONSTANTINOS MOUSTAKAS, DIMITRIOS E. TSAOPOULOS, 2020. A Review of Finite Element Modeling and Simulation of the Anterior Cruciate Ligament Reconstruction. Tesalonika: Centre for Research and Technology-Hellas. Front Bioeng Biotechnol. 2020 Aug 20;8:967. https://doi.org/10.3389/fbioe.2020.00967

ANSYS. 2016. ANSYS Mechanical APDL Element. Reference. Canonsburg: ANSYS

RODRÍGUEZ-MERCHÁN, EMERITO CARLOS. 2021. Anterior Cruciate Ligament Reconstruction: Is Biological Augmentation Beneficial? Madrid: La Paz University Hospital. Int J Mol Sci. 2021 Nov 22; 22(22): 12566. https://doi.org/10.3390/ijms222212566

GAITH, MOHAMED S., IMAD AL-HAYEK. 2012. Elastic Comparison Between Human and Bovine Femural Bone. Amman: Al-Balqaa Applied University. Research Journal of Applied Sciences, Engineering and Technology 4(23): 5183-5187, 2012. ISSN: 2040-7467. https://maxwellsci.com/print/rjaset/v4-5183-5187.pdf

DAVIS, LAWRENCE. 2020. Strength of Human Bones. Rosenburg: Umpqua Community College.

KATSAMANIS, F., RAFTOPOULOS, D. D. 1990. Determination of Mechanical Properties of Human Femoral Cortical Bone by the Hopkinson Bar Stress Technique. Toledo: University of Toledo. J Biomech . 1990;23(11):1173-84. https://doi.org/10.1016/0021-9290(90)90010-z

KEMPER, A., MCNALLY, C., KENNEDY, E., MANOOGIAN, S.J., & DUMA, S.M. 2007. The Material Properties of Human Tibia Cortical Bone in Tension and Compression: Implications for the Tibia Index. https://www-esv.nhtsa.dot.gov/Proceedings/20/07-0470-O.pdf

MAHARAJ, P. S. R. SENTHIL, MAHESWARAN, R., VASANTHANATHAN, A. 2013. Numerical Analysis of Fractured Femur Bone with Prosthetic Bone Plates. Sivakasi: Mepco Schlenk Engineering College. http://dx.doi.org/10.1016/j.proeng.2013.09.204

GHOSH, M., CHOWDHURY, B. U., PARVEJ, M. S., AFSAR, A. M. 2017. Modeling and Analysis of Elastic Fields in Tibia and Fibula. Dhaka: Bangladesh University of Engineering and Technology. AIP Conference Proceedings 1919, 020016 (2017). https://doi.org/10.1063/1.5018534

NEUMANN, DONALD A. 2010. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. St. Louis: Mosby Elsevier

LECHAT, CÉLINE, BUNSELL, ANTHONY R., DAVIES, P., PIANT, ANNE. 2006. Mechanical behavior of polyethylene terephthalate & polyethylene naphthalate fibers under cyclic loading. Evry Cedex: Centre des Matériaux . http://dx.doi.org/10.1007/s10853-006-2372-x

MOAVENI, SAEED. 2015. Finite Element Analysis Theory and Application with ANSYS Fourth Edition Global Edition. Harlow: Pearson

DESIGNER DATA. 2022. PET. Polyethene terephthalate | Designerdata

LAI, YU-SHU., WEN-CHUAN CHEN, CHANG-HUNG HUANG, CHENG, CHENG-KUNG, KAM-KONG CHAN, TING-KUO CHANG, 2015. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction. Taipei: National Yang-Ming University. PLoS One. 2015 May 22;10(5):e0127293. https://doi.org/10.1371/journal.pone.0127293

Downloads

Published

2023-01-31

Issue

Section

Articles